

    
      
          
            
  
Welcome to fpie

Poisson Image
Editing [https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf] is
a technique that can blend two images together without artifacts. Given
a source image and its corresponding mask, and a coordination on target
image, this algorithm can always generate amazing result.

This project aims to provide a fast poisson image editing algorithm
(based on Jacobi
Method [https://en.wikipedia.org/wiki/Jacobi_method]) that can
utilize multi-core CPU or GPU to handle a high-resolution image input.
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Get Start


Installation


Linux/macOS

# install cmake >= 3.4
# if you don't have sudo (like GHC), install cmake from source
# on macOS, type `brew install cmake`
$ pip install fpie

# or install from source
$ pip install .







Extensions

We provide 7 backends:


	NumPy, pip install numpy;


	Numba [https://github.com/numba/numba], pip install numba;


	GCC, needs cmake and gcc;


	OpenMP, needs cmake and gcc (on macOS you need to change clang to gcc-11);


	CUDA, needs nvcc;


	MPI, needs mpicc (on macOS: brew install open-mpi) and pip install mpi4py;


	Taichi [https://github.com/taichi-dev/taichi], pip install taichi.




Please refer to Backend for various usages.

After installation, you can use --check-backend option to verify:

$ fpie --check-backend
['numpy', 'numba', 'taichi-cpu', 'taichi-gpu', 'gcc', 'openmp', 'mpi', 'cuda']





The above output shows all extensions have successfully installed.




Usage

We have prepared the test suite to run:

$ cd tests && ./data.py





This script will download 8 tests from GitHub, and create 10 images for
benchmarking (5 circle, 5 square). To run:

$ fpie -s test1_src.jpg -m test1_mask.jpg -t test1_tgt.jpg -o result1.jpg -h1 -150 -w1 -50 -n 5000 -g max
$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result2.jpg -h1 130 -w1 130 -n 5000 -g src
$ fpie -s test3_src.jpg -m test3_mask.jpg -t test3_tgt.jpg -o result3.jpg -h1 100 -w1 100 -n 5000 -g max
$ fpie -s test4_src.jpg -m test4_mask.jpg -t test4_tgt.jpg -o result4.jpg -h1 100 -w1 100 -n 5000 -g max
$ fpie -s test5_src.jpg -m test5_mask.png -t test5_tgt.jpg -o result5.jpg -h0 -70 -w0 0 -h1 50 -w1 0 -n 5000 -g max
$ fpie -s test6_src.png -m test6_mask.png -t test6_tgt.png -o result6.jpg -h1 50 -w1 0 -n 5000 -g max
$ fpie -s test7_src.jpg -t test7_tgt.jpg -o result7.jpg -h1 50 -w1 30 -n 5000 -g max
$ fpie -s test8_src.jpg -t test8_tgt.jpg -o result8.jpg -h1 90 -w1 90 -n 10000 -g max





Here are the results:










	#

	Source image

	Mask image

	Target image

	Result image





	1

	[image: image3]

	[image: image4]

	[image: image5]

	[image: image6]



	2

	[image: image7]

	[image: image8]

	[image: image9]

	[image: image10]



	3

	[image: image11]

	[image: image12]

	[image: image13]

	[image: image14]
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	[image: image15]

	[image: image16]

	[image: image17]

	[image: image18]
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	[image: image19]

	[image: image20]
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	[image: image22]
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	7

	[image: image27]

	/

	[image: image28]

	[image: image29]
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GUI

$ fpie-gui -s test3_src.jpg -t test3_tgt.jpg -o result.jpg -b cuda -n 10000





[image: image33]

We provide a simple GUI for real-time seamless cloning. You need to use
your mouse to draw a rectangle on top of the source image, and click a
point in target image. After that the result will automatically be
generated. In the end, you can press ESC to terminate the program.



Backend and Solver

We have provided 7 backends. Each backend has two solvers: EquSolver and
GridSolver. You can find the difference between these two solvers in the
next section.

For different backend usage, please check out the related documentation
under docs/backend.md.

For other usage, please run fpie -h or fpie-gui -h to see the
hint.

$ fpie -h
usage: fpie [-h] [-v] [--check-backend] [-b {numpy,numba,taichi-cpu,taichi-gpu,gcc,openmp,mpi,cuda}] [-c CPU] [-z BLOCK_SIZE]
            [--method {equ,grid}] [-s SOURCE] [-m MASK] [-t TARGET] [-o OUTPUT] [-h0 H0] [-w0 W0] [-h1 H1] [-w1 W1] [-g {max,src,avg}]
            [-n N] [-p P] [--mpi-sync-interval MPI_SYNC_INTERVAL] [--grid-x GRID_X] [--grid-y GRID_Y]

optional arguments:
  -h, --help            show this help message and exit
  -v, --version         show the version and exit
  --check-backend       print all available backends
  -b {numpy,numba,taichi-cpu,taichi-gpu,gcc,openmp,mpi,cuda}, --backend {numpy,numba,taichi-cpu,taichi-gpu,gcc,openmp,mpi,cuda}
                        backend choice
  -c CPU, --cpu CPU     number of CPU used
  -z BLOCK_SIZE, --block-size BLOCK_SIZE
                        cuda block size (only for equ solver)
  --method {equ,grid}   how to parallelize computation
  -s SOURCE, --source SOURCE
                        source image filename
  -m MASK, --mask MASK  mask image filename (default is to use the whole source image)
  -t TARGET, --target TARGET
                        target image filename
  -o OUTPUT, --output OUTPUT
                        output image filename
  -h0 H0                mask position (height) on source image
  -w0 W0                mask position (width) on source image
  -h1 H1                mask position (height) on target image
  -w1 W1                mask position (width) on target image
  -g {max,src,avg}, --gradient {max,src,avg}
                        how to calculate gradient for PIE
  -n N                  how many iteration would you perfer, the more the better
  -p P                  output result every P iteration
  --mpi-sync-interval MPI_SYNC_INTERVAL
                        MPI sync iteration interval
  --grid-x GRID_X       x axis stride for grid solver
  --grid-y GRID_Y       y axis stride for grid solver








Benchmark Result

[image: image34]

Please refer to Benchmark for detail.



Algorithm Detail

The general idea is to keep most of gradient in source image, while
matching the boundary of source image and target image pixels.

The gradient is computed by

\(\nabla(x,y)=4I(x,y)-I(x-1,y)-I(x,y-1)-I(x+1,y)-I(x,y+1)\)

After computing the gradient in source image, the algorithm tries to
solve the following problem: given the gradient and the boundary value,
calculate the approximate solution that meets the requirement, i.e., to
keep target image’s gradient as similar as the source image.

This process can be formulated as \((4-A)\vec{x}=\vec{b}\), where
\(A\in\mathbb{R}^{N\times N}\), \(\vec{x}\in\mathbb{R}^N\),
\(\vec{b}\in\mathbb{R}^N\), \(N\) is the number of pixels in the
mask, \(A\) is a giant sparse matrix because each line of A only
contains at most 4 non-zero value (neighborhood), \(\vec{b}\) is the
gradient from source image, and \(\vec{x}\) is the result value.

\(N\) is always a large number, i.e., greater than 50k, so the
Gauss-Jordan Elimination cannot be directly applied here because of the
high time complexity \(O(N^3)\). People use Jacobi
Method [https://en.wikipedia.org/wiki/Jacobi_method] to solve the
problem. Thanks to the sparsity of matrix A, the overall time complexity
is \(O(MN)\) where \(M\) is the number of iteration performed by
poisson image editing.

This project parallelizes Jacobi method to speed up the computation. To
our best knowledge, there’s no public project on GitHub that implements
poisson image editing with either OpenMP, or MPI, or CUDA. All of them
can only handle a small size image workload.


EquSolver vs GridSolver

Usage: --method {equ,grid}

EquSolver directly constructs the equations \((4-A)\vec{x}=\vec{b}\)
by re-labeling the pixel, and use Jacobi method to get the solution via
\(\vec{x}'=(A\vec{x}+\vec{b})/4\).

GridSolver uses the same Jacobi iteration, however, it keeps the 2D
structure of the original image instead of re-labeling the pixel in the
mask. It may take some advantage when the mask region covers all of the
image, because in this case GridSolver can save 4 read instructions by
directly calculating the neighborhood’s coordinate.

If the GridSolver’s parameter is carefully tuned (--grid-x and
--grid-y), it can always perform better than EquSolver with
different backend configuration.



Gradient for PIE

Usage: -g {max,src,avg}

The PIE
paper [https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf]
states some variant of gradient calculation such as Equ. 12: using the
maximum gradient to perform “mixed seamless cloning”. We also provide
such an option in our program:


	src: only use the gradient from source image


	avg: use the average gradient of source image and target image


	max: use the max gradient of source and target image




The following example shows the difference between these three methods:










	#

	target image

	–gradient=src

	–gradient=avg

	–gradient=max





	3

	[image: image40]

	[image: image41]

	[image: image42]

	[image: image43]
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	[image: image44]

	[image: image45]

	[image: image46]

	[image: image47]
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	[image: image48]

	[image: image49]

	[image: image50]

	[image: image51]
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Backend

To specify backend, simply typing -b cuda or --backend openmp,
together with other parameters described below.

Feel free to play fpie with other arguments!


GridSolver

GridSolver keeps most of the 2D structure of the image, instead of
relabeling pixels as EquSolver. To use GridSolver in some of the
following backends, you need to specify --grid-x and --grid-y to
determine the access pattern of the large 2D array.

Here is a Python pseudocode to show how it works:

arr = np.random.random(size=[N, M])
# here is a sequential scan:
for i in range(N):
    for j in range(M):
        func(arr[i, j])
# however, we can use block-level access pattern to improve the cache hit rate:
for i in range(N // grid_x):
    for j in range(M // grid_y):
        # the grid size is (grid_x, grid_y)
        for x in range(grid_x):
            for y in range(grid_y):
                func(arr[i * grid_x + x, j * grid_y + y])







NumPy

This backend uses NumPy vectorized operation for parallel computation.

There’s no extra parameter for NumPy EquSolver:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b numpy --method equ
Successfully initialize PIE equ solver with numpy backend
# of vars: 12559
Iter 5000, abs error [450.09415 445.24747 636.1397 ]
Time elapsed: 3.26s
Successfully write image to result.jpg





There’s no extra parameter for NumPy GridSolver:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b numpy --method grid
Successfully initialize PIE grid solver with numpy backend
# of vars: 17227
Iter 5000, abs error [450.07922 445.27014 636.1374 ]
Time elapsed: 3.09s
Successfully write image to result.jpg







Numba

This backend use NumPy vectorized operation together with numba jit
function for parallel computation.

There’s no extra parameter for Numba EquSolver:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b numba --method equ
Successfully initialize PIE equ solver with numba backend
# of vars: 12559
Iter 5000, abs error [449.83978128 445.02560616 635.9542823 ]
Time elapsed: 1.5883s
Successfully write image to result.jpg





There’s no extra parameter for Numba GridSolver:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b numba --method grid
Successfully initialize PIE grid solver with numba backend
# of vars: 17227
Iter 5000, abs error [449.89603 445.08475 635.89545]
Time elapsed: 5.6462s
Successfully write image to result.jpg







GCC

This backend uses a single thread C++ program to perform computation.

There’s no extra parameter for GCC EquSolver:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b gcc --method equ
Successfully initialize PIE equ solver with gcc backend
# of vars: 12559
Iter 5000, abs error [ 5.179281   6.6939087 11.006622 ]
Time elapsed: 0.29s
Successfully write image to result.jpg





For GCC GridSolver, you need to specify --grid-x and --grid-y
described in the first section:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b gcc --method grid --grid-x 8 --grid-y 8
Successfully initialize PIE grid solver with gcc backend
# of vars: 17227
Iter 5000, abs error [ 5.1776047  6.69458   11.001862 ]
Time elapsed: 0.36s
Successfully write image to result.jpg







Taichi

Taichi [https://github.com/taichi-dev/taichi] is an open-source,
imperative, parallel programming language for high-performance numerical
computation. We provide 2 choices: taichi-cpu for CPU-level
parallelization, taichi-gpu for GPU-level parallelization. You can
install taichi via pip install taichi.


	For taichi-cpu: use -c or --cpu to determine how many
CPUs it will use;


	For taichi-gpu: use -z or --block-size to determine the
number of threads used in a block.




The parallelization strategy for Taichi backend is written by Taichi
itself.

There’s no other parameters for Taichi EquSolver:

# taichi-cpu
$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b taichi-cpu --method equ -c 6
[Taichi] version 0.9.2, llvm 10.0.0, commit 7a4d73cd, linux, python 3.8.10
[Taichi] Starting on arch=x64
Successfully initialize PIE equ solver with taichi-cpu backend
# of vars: 12559
Iter 5000, abs error [ 5.1899223  6.708023  11.034821 ]
Time elapsed: 0.57s
Successfully write image to result.jpg





# taichi-gpu
$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b taichi-gpu --method equ -z 1024
[Taichi] version 0.9.2, llvm 10.0.0, commit 7a4d73cd, linux, python 3.8.10
[Taichi] Starting on arch=cuda
Successfully initialize PIE equ solver with taichi-gpu backend
# of vars: 12559
Iter 5000, abs error [37.35366  46.433205 76.09506 ]
Time elapsed: 0.60s
Successfully write image to result.jpg





For Taichi GridSolver, you also need to specify --grid-x and
--grid-y described in the first section:

# taichi-cpu
$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b taichi-cpu --method grid --grid-x 16 --grid-y 16 -c 12
[Taichi] version 0.9.2, llvm 10.0.0, commit 7a4d73cd, linux, python 3.8.10
[Taichi] Starting on arch=x64
Successfully initialize PIE grid solver with taichi-cpu backend
# of vars: 17227
Iter 5000, abs error [ 5.310623   6.8661118 11.2751465]
Time elapsed: 0.73s
Successfully write image to result.jpg





# taichi-gpu
$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b taichi-gpu --method grid --grid-x 8 --grid-y 8 -z 64
[Taichi] version 0.9.2, llvm 10.0.0, commit 7a4d73cd, linux, python 3.8.10
[Taichi] Starting on arch=cuda
Successfully initialize PIE grid solver with taichi-gpu backend
# of vars: 17227
Iter 5000, abs error [37.74704  46.853233 74.741455]
Time elapsed: 0.63s
Successfully write image to result.jpg







OpenMP

OpenMP backend needs to specify the number of CPU cores it can use, with
-c or --cpu option (default choice is to use all CPU cores).

There’s no other parameters for OpenMP EquSolver:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b openmp --method equ -c 6
Successfully initialize PIE equ solver with openmp backend
# of vars: 12559
Iter 5000, abs error [ 5.2758713  6.768402  11.11969  ]
Time elapsed: 0.06s
Successfully write image to result.jpg





For OpenMP GridSolver, you also need to specify --grid-x and
--grid-y described in the first section:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b openmp --method grid --grid-x 8 --grid-y 8 -c 6
Successfully initialize PIE grid solver with openmp backend
# of vars: 17227
Iter 5000, abs error [ 5.187172  6.701462 11.020264]
Time elapsed: 0.10s
Successfully write image to result.jpg






Parallelization Strategy

For
EquSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/openmp/equ.cc],
it first groups the pixels into two folds by (x + y) % 2, then
parallelizes per-pixel iteration inside a group in each step. This
strategy can utilize the thread-local assessment.

For
GridSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/openmp/grid.cc],
it parallelizes per-grid iteration in each step, where the grid size is
(grid_x, grid_y). It simply iterates all pixels in each grid.




MPI

To run with MPI backend, you need to install both mpicc and mpi4py
(pip install mpi4py).

Different from other methods, you need to use mpiexec or mpirun
to launch MPI service instead of directly calling fpie program.
-np option is to indicate the number of process it will launch.

Apart from that, you need to specify the synchronization interval for
MPI backend with --mpi-sync-interval. If this number is too small,
it will cause a large amount of overhead of synchronization; however, if
it is too large, the quality of solution drops down dramatically.

MPI EquSolver and GridSolver don’t have any other arguments because of
the parallelization strategy we used, see the next section.

$ mpiexec -np 6 fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b mpi --method equ --mpi-sync-interval 100
Successfully initialize PIE equ solver with mpi backend
# of vars: 12559
Iter 5000, abs error [264.6767  269.55304 368.4869 ]
Time elapsed: 0.10s
Successfully write image to result.jpg





$ mpiexec -np 6 fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b mpi --method grid --mpi-sync-interval 100
Successfully initialize PIE grid solver with mpi backend
# of vars: 17227
Iter 5000, abs error [204.41124 215.00548 296.4441 ]
Time elapsed: 0.13s
Successfully write image to result.jpg






Parallelization Strategy

MPI cannot use share-memory program model. We need to reduce the amount
of data communicated while maintaining the quality of the solution.

Each MPI process is only responsible for a part of computation, and
synchronized with other process per mpi_sync_interval steps, denoted
as \(S\) here. When \(S\) is too small, the synchronization
overhead dominates the computation; when \(S\) is too large, each
process computes solution independently without global information,
therefore the quality of the solution gradually deteriorates.

For
EquSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/mpi/equ.cc],
it’s hard to say which part of the data should be exchanged to other
process, since it relabels all pixels at the very beginning of this
process. We use MPI_Bcast to force sync all data per \(S\)
iterations.

For
GridSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/mpi/grid.cc],
we use line partition: process i exchanges its first and last line
data with process i-1 and i+1 separately per \(S\)
iterations. This strategy has a continuous memory layout to exchange,
thus has less overhead comparing with block-level partition.




CUDA

CUDA EquSolver needs to specify the number of threads in one block it
will use, with -z or --block-size option (default value is
1024):

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b cuda --method equ -z 256
---------------------------------------------------------
Found 1 CUDA devices
Device 0: NVIDIA GeForce GTX 1060
   SMs:        10
   Global mem: 6078 MB
   CUDA Cap:   6.1
---------------------------------------------------------
Successfully initialize PIE equ solver with cuda backend
# of vars: 12559
Iter 5000, abs error [37.63664 48.39614 79.6199 ]
Time elapsed: 0.06s
Successfully write image to result.jpg





For CUDA GridSolver, you also need to specify --grid-x and
--grid-y described in the first section, instead of -z:

$ fpie -s test2_src.png -m test2_mask.png -t test2_tgt.png -o result.jpg -h1 130 -w1 130 -n 5000 -g src -b cuda --method grid --grid-x 4 --grid-y 128
---------------------------------------------------------
Found 1 CUDA devices
Device 0: NVIDIA GeForce GTX 1060
   SMs:        10
   Global mem: 6078 MB
   CUDA Cap:   6.1
---------------------------------------------------------
Successfully initialize PIE grid solver with cuda backend
# of vars: 17227
Iter 5000, abs error [37.50096  48.061874 79.06909 ]
Time elapsed: 0.07s
Successfully write image to result.jpg






Parallelization Strategy

The strategy used on the CUDA backend is quite similar to OpenMP.

For
EquSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/cuda/equ.cu],
it performs equation-level parallelization.

For
GridSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/cuda/grid.cu],
each grid with size (grid_x, grid_y) will be in the same block. A
thread in a block performs iteration only for a single pixel.






            

          

      

      

    

  

    
      
          
            
  
Benchmark


Environment configuration

OS: Red Hat Enterprise Linux Workstation 7.9 (Maipo)

CPU: 8x Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz

GPU: GeForce RTX 2080 8G

Python: 3.6.8

Python package version:


	numpy==1.19.5


	opencv-python==4.5.5.64


	mpi4py==3.1.3


	numba==0.53.1


	taichi==1.0.0






Problem size vs backend

To run and get the time spend:

$ fpie -s $NAME.png -t $NAME.png -m $NAME.png -o result.png -n 5000 -b $BACKEND --method $METHOD ...





The following table shows the best performance of corresponding backend
choice, i.e., tuning other parameters on square10/circle10 and apply
them to other tests, instead of using the default value.

[image: image0]

The above plots are generated by per-pixel operation time cost.


EquSolver

The benchmark commands for squareX and circleX:

# numpy
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b numpy --method equ
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b numpy --method equ
# numba
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b numba --method equ
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b numba --method equ
# gcc
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b gcc --method equ
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b gcc --method equ
# openmp
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b openmp --method equ -c 8
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b openmp --method equ -c 8
# mpi
mpiexec -np 8 fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b mpi --method equ --mpi-sync-interval 100
mpiexec -np 8 fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b mpi --method equ --mpi-sync-interval 100
# cuda
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b cuda --method equ -z 256
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b cuda --method equ -z 256
# taichi-cpu
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b taichi-cpu --method equ -c 8
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b taichi-cpu --method equ -c 8
# taichi-gpu
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b taichi-gpu --method equ -z 1024
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b taichi-gpu --method equ -z 1024















	EquSolver

	square6

	square7

	square8

	square9

	square10





	# of vars

	4097

	16385

	65537

	262145

	1048577



	NumPy

	0.8367s

	3.2142s

	12.1836s

	52.4939s

	230.5375s



	Numba

	0.7257s

	1.9472s

	7.0761s

	32.4084s

	149.3390s



	GCC

	0.0740s

	0.3013s

	1.2061s

	5.0351s

	22.0276s



	OpenMP

	0.0176s

	0.0423s

	0.1447s

	0.5835s

	8.6203s



	MPI

	0.0127s

	0.0488s

	0.1757s

	0.8253s

	8.3310s



	CUDA

	0.0112s

	0.0141s

	0.0272s

	0.1835s

	0.6967s



	Taichi-CPU

	0.4437s

	0.5178s

	0.7667s

	1.9061s

	13.2009s



	Taichi-GPU

	0.5730s

	0.5727s

	0.6022s

	0.8101s

	1.4430s
















	EquSolver

	circle6

	circle7

	circle8

	circle9

	circle10





	# of vars

	4256

	16676

	65972

	262338

	1049486



	NumPy

	0.8618s

	3.2280s

	12.5615s

	52.7161s

	226.5578s



	Numba

	0.7430s

	1.9789s

	7.1499s

	32.1932s

	132.7537s



	GCC

	0.0764s

	0.3062s

	1.2115s

	4.9785s

	22.1516s



	OpenMP

	0.0179s

	0.0391s

	0.1301s

	0.5177s

	8.2778s



	MPI

	0.0131s

	0.0494s

	0.1767s

	0.8155s

	8.3823s



	CUDA

	0.0113s

	0.0139s

	0.0274s

	0.1831s

	0.6966s



	Taichi-CPU

	0.4461s

	0.5148s

	0.7687s

	1.8646s

	12.9343s



	Taichi-GPU

	0.5735s

	0.5679s

	0.5971s

	0.7987s

	1.4379s








GridSolver

The benchmark commands for squareX and circleX:

# numpy
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b numpy --method grid
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b numpy --method grid
# numba
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b numba --method grid
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b numba --method grid
# gcc
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b gcc --method grid --grid-x 8 --grid-y 8
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b gcc --method grid --grid-x 8 --grid-y 8
# openmp
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b openmp --method grid -c 8 --grid-x 2 --grid-y 16
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b openmp --method grid -c 8 --grid-x 2 --grid-y 16
# mpi
mpiexec -np 8 fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b mpi --method grid --mpi-sync-interval 100
mpiexec -np 8 fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b mpi --method grid --mpi-sync-interval 100
# cuda
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b cuda --method grid --grid-x 2 --grid-y 128
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b cuda --method grid --grid-x 2 --grid-y 128
# taichi-cpu
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b taichi-cpu --method grid -c 8 --grid-x 8 --grid-y 128
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b taichi-cpu --method grid -c 8 --grid-x 8 --grid-y 128
# taichi-gpu
fpie -s square10.png -t square10.png -m square10.png -o result.png -n 5000 -b taichi-gpu --method grid -z 1024 --grid-x 16 --grid-y 64
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b taichi-gpu --method grid -z 1024 --grid-x 16 --grid-y 64















	GridSolver

	square6

	square7

	square8

	square9

	square10





	# of vars

	4356

	16900

	66564

	264196

	1052676



	NumPy

	0.7809s

	2.8823s

	12.3242s

	51.7496s

	209.5504s



	Numba

	1.5838s

	6.0720s

	24.0901s

	99.5048s

	410.6119s



	GCC

	0.0884s

	0.3504s

	1.3832s

	5.5402s

	24.6482s



	OpenMP

	0.0177s

	0.0547s

	0.2011s

	0.7805s

	5.4012s



	MPI

	0.0136s

	0.0516s

	0.1999s

	0.7956s

	5.4109s



	CUDA

	0.0116s

	0.0152s

	0.0330s

	0.1458s

	0.5738s



	Taichi-CPU

	0.5308s

	0.8638s

	1.6196s

	4.8147s

	20.2245s



	Taichi-GPU

	0.6538s

	0.6505s

	0.6638s

	0.8298s

	1.3439s
















	GridSolver

	circle6

	circle7

	circle8

	circle9

	circle10





	# of vars

	5476

	21316

	84100

	335241

	1338649



	NumPy

	0.8554s

	3.0602s

	13.1915s

	55.3018s

	224.0399s



	Numba

	1.8680s

	7.1174s

	28.1826s

	117.5155s

	481.5718s



	GCC

	0.0997s

	0.3768s

	1.4753s

	5.8558s

	25.1236s



	OpenMP

	0.0219s

	0.0670s

	0.2498s

	0.9838s

	6.0868s



	MPI

	0.0155s

	0.0614s

	0.2446s

	0.9810s

	5.8527s



	CUDA

	0.0113s

	0.0150s

	0.0334s

	0.1507s

	0.5954s



	Taichi-CPU

	0.5558s

	0.8727s

	1.6317s

	4.8740s

	20.2178s



	Taichi-GPU

	0.6447s

	0.6418s

	0.6521s

	0.8309s

	1.3578s









Per backend performance

In this section, we will perform ablation studies with OpenMP/MPI/CUDA
backend. We use circle9/10 with 5000 iterations as the experiment
setting.


OpenMP

[image: image1]

Command to run:

fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b openmp --method equ -c 8
fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b openmp --method grid -c 8 --grid-x 2 --grid-y 16















	circle9

	1

	2

	4

	6

	8





	# of vars

	262338

	262338

	262338

	262338

	262338



	EquSolver

	3.5689s

	1.7679s

	0.8987s

	0.6344s

	0.4982s
















	circle9

	1

	2

	4

	6

	8





	# of vars

	335241

	335241

	335241

	335241

	335241



	GridSolver

	6.2717s

	3.1530s

	1.8758s

	1.2955s

	0.9897s
















	circle10

	1

	2

	4

	6

	8





	# of vars

	1049486

	1049486

	1049486

	1049486

	1049486



	EquSolver

	16.9218s

	9.2764s

	7.8828s

	8.2016s

	8.0285s
















	circle10

	1

	2

	4

	6

	8





	# of vars

	1338649

	1338649

	1338649

	1338649

	1338649



	GridSolver

	26.7571s

	13.5669s

	8.2486s

	6.4654s

	6.2539s








MPI

[image: image2]

Command to run:

mpiexec -np 8 fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b mpi --method equ --mpi-sync-interval 100
mpiexec -np 8 fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b mpi --method grid --mpi-sync-interval 100















	circle9

	1

	2

	4

	6

	8





	# of vars

	262338

	262338

	262338

	262338

	262338



	EquSolver

	4.9217s

	2.4655s

	1.3378s

	0.9310s

	0.7996s
















	circle9

	1

	2

	4

	6

	8





	# of vars

	335241

	335241

	335241

	335241

	335241



	GridSolver

	6.2136s

	3.1381s

	1.8817s

	1.3124s

	0.9822s
















	circle10

	1

	2

	4

	6

	8





	# of vars

	1049486

	1049486

	1049486

	1049486

	1049486



	EquSolver

	22.1275s

	11.5566s

	8.2541s

	8.2208s

	8.3238s
















	circle10

	1

	2

	4

	6

	8





	# of vars

	1338649

	1338649

	1338649

	1338649

	1338649



	GridSolver

	26.8360s

	13.6866s

	8.3945s

	6.6107s

	5.8929s








CUDA

[image: image3]

Command to run:

fpie -s circle10.png -t circle10.png -m circle10.png -o result.png -n 5000 -b cuda --method equ -z 1024
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	32

	64

	128

	256

	512

	1024





	# of vars

	262338

	262338

	262338

	262338

	262338

	262338

	262338



	EquSolver

	0.1885s

	0.1844s

	0.1841s

	0.1831s

	0.1823s

	0.1861s

	0.1893s
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	16

	32

	64

	128

	256

	512

	1024





	# of vars

	1049486

	1049486

	1049486

	1049486

	1049486

	1049486

	1049486



	EquSolver

	0.7220s

	0.7038s

	0.7012s

	0.6976s

	0.6973s

	0.6983s

	0.7037s











            

          

      

      

    

  

    
      
          
            
  
Final Report


Summary

We have implemented a parallelized Poisson image editor with Jacobi method. It can compute results
using seven extensions: NumPy, Numba [https://github.com/numba/numba],
Taichi [https://github.com/taichi-dev/taichi], single-threaded c++, OpenMP, MPI, and CUDA. In
terms of performance, we have a detailed benchmarking result where the CUDA backend can achieve 31
to 42 times speedup on GHC machines compared to the single-threaded c++ implementation. In terms of
user-experience, we have a simple GUI to demonstrate the results interactively, released a standard
PyPI package [https://pypi.org/project/fpie/], and provide a
website [https://fpie.readthedocs.io/] for project documentation.
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Background


Poisson Image Editing

Poisson Image Editing [https://www.cs.jhu.edu/~misha/Fall07/Papers/Perez03.pdf] is a technique
that can fuse two images together without producing artifacts. Given a source image and its
corresponding mask, as well as a coordination on the target image, the algorithm always yields
amazing result. The general idea is to keep most of gradient in source image unchanged, while
matching the boundary of source image and target image pixels.

The gradient per pixel is computed by


\[\nabla(x,y)=4I(x,y)-I(x-1,y)-I(x,y-1)-I(x+1,y)-I(x,y+1)\]

After calculating the gradient in source image, the algorithm tries to solve the following problem:
given the gradient and the boundary value, calculate the approximate solution that meets the
requirement, i.e., to keep target image’s gradient as similar as the source image.

This process can be formulated as \((4-A)\vec{x}=\vec{b}\), where
\(A\in\mathbb{R}^{N\times N}\), \(\vec{x}\in\mathbb{R}^N\), \(\vec{b}\in\mathbb{R}^N\),
\(N\) is the number of pixels in the mask, \(A\) is a giant sparse matrix because each line
of A only contains at most 4 non-zero value (neighborhood), \(\vec{b}\) is the gradient from
source image, and \(\vec{x}\) is the result value.

\(N\) is always a large number, i.e., greater than 50k, so the Gauss-Jordan Elimination cannot
be directly applied here because of the high time complexity \(O(N^3)\). People use Jacobi
Method [https://en.wikipedia.org/wiki/Jacobi_method] to solve the problem. Thanks to the sparsity
of matrix \(A\), the overall time complexity is \(O(MN)\) where \(M\) is the number of
iteration performed by Poisson image editing. The iterative equation is
\(\vec{x}' \leftarrow (A\vec{x}+\vec{b})/4\).

This project parallelizes Jacobi method to speed up the computation. To our best knowledge, there’s
no public project on GitHub that implements Poisson image editing with either OpenMP, or MPI, or
CUDA. All of them can only handle a small size image workload
(link [https://github.com/PPPW/poisson-image-editing/issues/1]).



PIE Solver

We implemented two different solvers: EquSolver and GridSolver.

EquSolver directly constructs the equations \((4-A)\vec{x}=\vec{b}\) by relabeling the pixel,
and use Jacobi method to get the solution via \(\vec{x}' \leftarrow (A\vec{x}+\vec{b})/4\).

""" EquSolver pseudocode."""

# pre-process
src, mask, tgt = read_images(src_name, mask_name, tgt_name)
A = build_A(mask)            # shape: (N, 4), dtype: int
X = build_X(tgt, mask)       # shape: (N, 3), dtype: float
B = build_B(src, mask, tgt)  # shape: (N, 3), dtype: float

# major computation, can be parallelized
for _ in range(n_iter):
    X = (X[A[:, 0]] + X[A[:, 1]] + X[A[:, 2]] + X[A[:, 3]] + B) / 4.0

# post-process
out = merge(tgt, X, mask)
write_image(out_name, out)





GridSolver uses the same Jacobi iteration, however, it keeps the 2D structure of the original image
instead of relabeling all pixels in the mask. It may have some advantages when the mask region
covers the whole image, because in this case GridSolver can save 4 read instructions by calculating
the coordinates of the neighborhood directly. Also, if we set the access pattern appropriately
(which will be discussed in Section Access Pattern), it has better locality in
getting the required data in each iteration.

""" GridSolver pseudocode."""

# pre-process
src, mask, tgt = read_images(src_name, mask_name, tgt_name)
# mask: shape: (N, M), dtype: uint8
grad = calc_grad(src, mask, tgt)  # shape: (N, M, 3), dtype: float
x, y = np.nonzero(mask)  # find element-wise pixel index of mask array

# major computation, can be parallelized
for _ in range(n_iter):
    tgt[x, y] = (tgt[x - 1, y] + tgt[x, y - 1] + tgt[x, y + 1] + tgt[x + 1, y] + grad[x, y]) / 4.0

# post-process
write_image(out_name, tgt)





The bottleneck for both solvers is the for-loop and can be easily parallelized. The implementation
detail and parallelization strategies will be discussed in Section Parallelization
Strategy.




Method


Language and Hardware Setup

We start building PIE with the help of pybind11 [https://github.com/pybind/pybind11] as we aim
to benchmark multiple parallelization methods, including hand-written CUDA code and other 3rd-party
libraries such as NumPy.

One of our project goal is to let the algorithm run on any *nix machine and can have a real-time
interactive result demonstration. For this reason, we didn’t choose a supercomputing cluster as our
hardware setup. Instead, we choose GHC machine to develop and measure the performance, which has 8x
i7-9700 CPU cores and an Nvidia RTX 2080Ti.



Access Pattern

For EquSolver, we can reorganize the order of pixels to obtain better locality when performing
parallel operations. Specifically, we can divide all pixels into two folds by (x + y) % 2. Here
is a small example:

# before
x1   x2   x3   x4   x5
x6   x7   x8   x9   x10
x11  x12  x13  x14  x15
...

# reorder
x1   x10  x2   x11  x3
x12  x4   x13  x5   x14
x6   x15  x7   x16  x8
...





This results in a tighter relationship between the 4 neighbors of each pixel. The ideal access
pattern is to iterate over these two groups separately, i.e.

for _ in range(n_iter):
    parallel for i in range(1, p):
        # i < p, neighbor >= p
        x_[i] = calc(b[i], neighbor(x, i))

    parallel for i in range(p, N):
        # i >= p, neighbor < p
        x[i] = calc(b[i], neighbor(x_, i))





Unfortunately, we only observe a clear advantage with OpenMP EquSolver. For other backend, the
sequential ID assignment is much better than reordering. See the section Parallelization Strategy -
OpenMP for a related discussion.

For GridSolver, since it retains most of the 2D structure of the image, we can use block-level
access pattern instead of sequential access pattern to improve cache hit rate. Here is a Python
pseudocode to show how it works:

N, M = tgt.shape[:2]
# here is a sequential scan:
parallel for i in range(N):
    parallel for j in range(M):
        if mask[i, j]:
            tgt_[i, j] = calc(grad[i, j], neighbor(tgt, i, j))
# however, we can use block-level access pattern to improve the cache hit rate:
parallel for i in range(N // grid_x):
    parallel for j in range(M // grid_y):
        # the grid size is (grid_x, grid_y)
        for x in range(i * grid_x, (i + 1) * grid_x):
            for y in range(j * grid_y, (j + 1) * grid_y):
                if mask[x, y]:
                    tgt_[x, y] = calc(grad[x, y], neighbor(tgt, x, y))







Synchronization vs Converge Speed

Since Jacobi Method is an iterative method for solving matrix equations, there is a trade-off
between the quality of solution and the frequency of synchronization.


Share Memory Programming Model

The naive approach is to create another matrix to store the solution. Once all pixels are computed,
the algorithm refreshes the original array with the new values:

for _ in range(n_iter):
    tmp = np.zeros_like(x)
    parallel for i in range(1, N):
        tmp[i] = calc(b[i], neighbor(x, i))
    x = tmp





It’s quite similar to the “gradient decent” approach in machine learning where only one step of
optimization is performed using all data samples each iteration. Interestingly, “stochastic gradient
decent”-style Jacobi Method works quite well:

for _ in range(n_iter):
    parallel for i in range(1, N):
        x[i] = calc(b[i], neighbor(x, i))





It’s because Jacobi Method guarantees its convergence, and w/o such a barrier, the error per pixel
will always become smaller. Comparing with the original approach, it also has a faster converge
speed.



Non-shared Memory Programming Model

The above approach works for shared memory programming models such as OpenMP and CUDA. However, for
non-shared memory programming models such as MPI, the above approach cannot work well. The solution
will be discussed in Section Parallelization Strategy - MPI.




Parallelization Strategy

This section will cover the implementation detail with three different backend (OpenMP/MPI/CUDA) and
two different solvers (EquSolver/GridSolver).


OpenMP

As mentioned before, OpenMP
EquSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/openmp/equ.cc]
first divides the pixels into two folds by (x + y) % 2, then parallelizes per-pixel iteration
inside a group in each step.

This strategy can utilize the thread-local assessment as the position of four neighborhood become
closer. However, it requires the entire array to be processed twice because of the division. In some
cases, such as CUDA, this approach introduces an overhead that exceeds the original computational
cost. However, in OpenMP, it has a significant runtime improvement.

OpenMP
GridSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/openmp/grid.cc]
assigns equal amount of blocks to each thread, with size (grid_x, grid_y) per block. Each thread
simply iterates all pixels in each block independently.

We use static assignment for both solvers to minimize the overhead of runtime task allocation, since
the workload is uniform per pixel/grid.



MPI

MPI cannot use the shared memory program model. We need to reduce the amount of data communicated,
while maintaining the quality of the solution.

Each MPI process is responsible for only a portion of the computation and synchronizes with other
process per mpi_sync_interval steps, denoted as \(S\) in this section. When \(S\) is too
small, the synchronization overhead dominates the computation; when \(S\) is too large, each
process computes the solution independently without global information, therefore the quality of the
solution gradually deteriorates.

For MPI
EquSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/mpi/equ.cc],
it’s hard to say which part of the data should be exchanged to other process, since it relabels all
pixels at pre-process stage. We assign an equal number of equations to each process and use
MPI_Bcast to force synchronization of all data per \(S\) iteration.

MPI
GridSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/mpi/grid.cc]
uses line partition: process i exchanges its first and last line data with process i-1 and
i+1 separately per \(S\) iterations. This strategy has a continuous memory layout, thus has
less overhead compared to block-level partition.

The workload per pixel is small and fixed. In fact, this type of workload is not suitable for MPI.



CUDA

The strategy used on the CUDA backend is quite similar to OpenMP.

CUDA
EquSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/cuda/equ.cu]
performs equation-level parallelization. It has sequential labels per pixel instead of dividing into
two folds as OpenMP does. Each block is assigned with an equal number of equations to execute Jacobi
Method independently. The threads in a block iterate over only a single equation. We also tested the
shared memory kernel, but it’s much slower than non-shared memory version.

For
GridSolver [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/fpie/core/cuda/grid.cu],
each grid with size (grid_x, grid_y) will be in the same block. The threads in a block iterates
over a single pixel only.

There are no barriers during the iteration of both solvers. The reason has been discussed in Section
Share Memory Programming Model.





Experiments


Experiment Setting


Hardware and Software

We use GHC83 to run all of the following experiments. Here is the hardware and software
configuration:


	OS: Red Hat Enterprise Linux Workstation 7.9 (Maipo)


	CPU: 8x Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz


	GPU: GeForce RTX 2080 8G


	Python: 3.6.8


	Python package version:


	numpy==1.19.5


	opencv-python==4.5.5.64


	mpi4py==3.1.3


	numba==0.53.1


	taichi==1.0.0










Data

We generate 10 images for benchmarking performance, 5 square and 5 circle. The script is
tests/data.py [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/blob/main/tests/data.py].
You can find the detail information in this table:










	ID

	Size

	# pixels

	# unmasked pixels

	Image





	square6

	66x66

	4356

	4356

	[image: image4]



	square7

	130x130

	16900

	16900

	[image: image5]



	square8

	258x258

	66564

	66564

	[image: image6]



	square9

	514x514

	264196

	264196

	[image: image7]



	square10

	1026x1026

	1052676

	1052676

	[image: image8]



	circle6

	74x74

	5476

	4291

	[image: image9]



	circle7

	146x146

	21316

	16727

	[image: image10]



	circle8

	290x290

	84100

	66043

	[image: image11]



	circle9

	579x579

	335241

	262341

	[image: image12]



	circle10

	1157x1157

	1338649

	1049489

	[image: image13]






We try to keep the number of unmasked pixels of circleX and squareX to be the same level. For
EquSolver there’s no difference, but for GridSolver it cannot be ignored, since it needs to process
all pixels no matter it is masked.



Metric

We measure the performance by “Time per Operation” (TpO for short) and “Cache Miss per Operation”
(CMpO for short). TpO is derived by total time / total number of iteration / number of pixel.
The smaller the TpO, the more efficient the parallel algorithm will be. CMpO is derived by
total cache miss / total number of iteration / number of pixel.




Result and Analysis

We use all seven backend to run benchmark experiments. GCC (single-threaded C++ implementation)
is the baseline. Details of the following experiment (commands and tables) can be found on
Benchmark page. For the sake of simplicity, we only demonstrate the plot in
the following sections. Most plots are in logarithmic scale.

[image: image14]


EquSolver vs GridSolver

If GridSolver’s parameters grid_x and grid_y are carefully tuned, in most cases it can
perform better than EquSolver in a handwritten backend configuration (OpenMP/MPI/CUDA). The analysis
will be performed in the following sections. However, it is difficult to say which one is better
using other third-party backends. This may be due to the internal design of these libraries.



Analysis for 3rd-party Backend


NumPy

NumPy is 10~11x slower than GCC with EquSolver, and 8~9x slower than GCC with GridSolver. This
result shows that the overhead of the NumPy solver is non-negligible. Each iteration requires
repeated data transfers between C and Python and the creation of some temporary arrays to compute
the results. Even if we have used vector operations in all the computations, it cannot take
advantage of the memory layout.



Numba

Numba is a just-in-time compiler for numerical functions in Python. For EquSolver, Numba is about
twice as fast as NumPy; however, for GridSolver, Numba is about twice as slow as NumPy. This result
suggests that Numba does not provide a general speedup for any NumPy operations, not to mention that
it is still slower than GCC.



Taichi

Taichi is an open-source, imperative, parallel programming language for high-performance numerical
computation. If we use Taichi with small size input images, it does not get much benefit. However,
when increasing the problem size to a very large scale, the advantage becomes much clear. We think
it is because the pre-processing step in Taichi is a non-negligible overhead.

On the CPU backend, EquSolver is faster than GCC, while GridSolver performs almost as well as GCC.
This shows the access pattern largely affects the actual performance.

On the GPU backend, although the TpO is twice as slow as CUDA with extremely large-scale input, it
is still faster than other backends. We are quite interested in other 3rd-party GPU solution’s
performance, and leave it as future work.




Analysis for Non 3rd-party Backend

OpenMP and MPI can achieve almost the same speed, but MPI’s converge speed is slower because of the
synchronization trade-off. CUDA is the fastest in all conditions.


OpenMP

EquSolver is 8~9x faster than GCC; GridSolver is 6~7x faster than GCC. However, there is a huge
performance drop when the problem size is greater than 1M for both two solvers. The threshold is
300k ~ 400k for EquSolver and 500k ~ 600k for GridSolver. We suspect that is because of cache-miss,
confirmed by the following numerical result:

















	OpenMP

	# of pixels

	100000

	200000

	300000

	400000

	500000

	600000

	700000

	800000

	900000

	1000000





	EquSolver

	Time (s)

	0.1912

	0.3728

	0.6033

	1.073

	2.0081

	3.4242

	4.1646

	5.6254

	6.2875

	7.6159



	EquSolver

	TpO (ns)

	0.3824

	0.3728

	0.4022

	0.5365

	0.8032

	1.1414

	1.1899

	1.4063

	1.3972

	1.5232



	EquSolver

	CMpO

	0.0341

	0.0201

	0.1104

	0.3713

	0.5799

	0.6757

	0.7356

	0.8083

	0.8639

	0.9232



	GridSolver

	Time (s)

	0.2870

	0.5722

	0.8356

	1.1321

	1.4391

	2.2886

	3.0738

	4.1967

	5.5097

	6.0635



	GridSolver

	TpO (ns)

	0.5740

	0.5722

	0.5571

	0.5661

	0.5756

	0.7629

	0.8782

	1.0492

	1.2244

	1.2127



	GridSolver

	CMpO

	0.0330

	0.0174

	0.0148

	0.0522

	0.1739

	0.3346

	0.3952

	0.4495

	0.5132

	0.5394






[image: image15]

We also investigated the impact of the number of threads on the performance of the OpenMP backend.
There is a linear speedup when the aforementioned cache-miss problem does not occur; when the
cache-miss problem is encountered, its performance rapidly saturates, especially for EquSolver. We
believe the reason behind is that GridSolver can take better advantage of locality compared to
EquSolver, since it has no relabeling pixel process and keep all of the 2D information.

[image: image16]



MPI

EquSolver and GridSolver is 6~7x faster than GCC. Like OpenMP, there is a huge performance drop. The
threshold is 300k ~ 400k for EquSolver and 400k ~ 500k for GridSolver. Fortunately, the following
table and plot confirms our assumption of cache-miss:

















	MPI

	# of pixels

	100000

	200000

	300000

	400000

	500000

	600000

	700000

	800000

	900000

	1000000





	EquSolver

	Time (s)

	0.2696

	0.6584

	0.9549

	1.6435

	2.6920

	3.6933

	4.7265

	5.7762

	6.8305

	7.7894



	EquSolver

	TpO (ns)

	0.5392

	0.6584

	0.6366

	0.8218

	1.0768

	1.2311

	1.3504

	1.4441

	1.5179

	1.5579



	EquSolver

	CMpO

	0.5090

	0.2743

	0.2998

	0.4646

	0.5995

	0.7006

	0.7525

	0.7951

	0.8204

	0.8391



	GridSolver

	Time (s)

	0.2994

	0.5948

	0.9088

	1.3075

	1.6024

	2.1239

	2.8969

	3.7388

	4.4776

	5.3026



	GridSolver

	TpO (ns)

	0.5988

	0.5948

	0.6059

	0.6538

	0.6410

	0.7080

	0.8277

	0.9347

	0.9950

	1.0605



	GridSolver

	CMpO

	0.5054

	0.2570

	0.1876

	0.2008

	0.2991

	0.3783

	0.4415

	0.4866

	0.5131

	0.5459






[image: image17]

A similar phenomenon occurs on the MPI backend when the number of processes changes:

[image: image18]



CUDA

EquSolver is 27~44x faster than GCC; GridSolver is 38~42x faster than GCC. The performance is
consistent across different input sizes.

We investigated the impact of different block size on CUDA EquSolver. For a better demonstration, we
didn’t use GridSolver because it requires tuning two parameters grid_x and grid_y. By
increasing the block size, the performance improves first, reaches a peak, and finally drops. The
best configuration is block size = 256.

When the block size is too small, it will use more grids for computation and therefore the overhead
of communication across grids will increase. When the block size is too large, the cache
invalidation problem dominates, even though fewer grids are used – since we are not using shared
memory in this CUDA kernel and there are no barriers to calling this kernel, we suspect that the
program will often read values that cannot be cached and will also often write values to invalidate
the cache.

[image: image19]






Contribution

Each group member’s contributions are on
GitHub [https://github.com/Trinkle23897/Fast-Poisson-Image-Editing/graphs/contributors].
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